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Calculation of minimum ignition energy
of premixed gases
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Abstract

The minimum ignition energy of premixed gases has been calculated by using two theoretical
expressions and compared with the experimental data. One expression considers the amount of
energy that the minimal flame should have, and the other the heat loss from the surface of the
minimal flamelet. The former is a cubic function of the quenching distance while the latter is a
quadratic function of quenching distance. It has been found that the latter expression gives a better
fit to the experimental data than the former, though the discrepancy is considerable even for the
latter expression. The calculated widths of the fronts of the minimal flame for various fuels were
about one-order of magnitude smaller than the corresponding experimentally determined quenching
distances, although no clear correlation relationship between the two quantities was found.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There are a variety of indices to express flammability characteristics of fuels. This is
because the combustion is a complicated phenomenon and the flammability hazard has
to be assessed from various points of view. The minimum ignition energy is one of the
most important to consider the potential hazard of various flammable gases and vapors.
Two theoretical expressions for calculating the minimum ignition energy are known: one is
based on the amount of energy that the minimal incipient flame contains, whereas the other
is based on the heat loss from the surface of minimal flame[1]. Since these expressions are
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Nomenclature

Cav molar heat capacity at constant pressure averaged for temperature range
from Tu to Tb

Cp molar heat capacity at constant pressure
d quenching distance
Emin minimum ignition energy
M molecular weight
R gas constant
Sav burning velocity averaged for temperature range fromTu to Tb
Su burning velocity
Tb burnt gas temperature
Tu unburnt gas temperature

Greek letters
δ width of flame front
λav heat conductivity averaged for the temperature range fromTu to Tb
µ coefficient of viscosity
ρb molar density of burnt gas at temperatureTb
ρu molar density of unburnt gas at temperatureTu

very simple and approximate, it is of interest to know how precisely they comply with the
experimental data.

In the equation based on the energy contained in the minimal flame, the minimum ignition
energy is apparently a cubic function of quenching distance, while in the heat loss expression
it is a quadratic function of quenching distance. On the other hand, it is known that there is a
close relationship between the minimum ignition energy and quenching distance. According
to Lewis and von Elbe, the minimum ignition energy is proportional to the cubic power of
quenching distance for strong flames and proportional to the square of quenching distance
for less strong flames[2]. Comparison of the two expressions is also of interest from this
point of view.

The purpose of the present paper is to apply the existing data to the theoretical equations
of the minimum ignition energy and examine their validity. Since the data available for the
minimum ignition energy and quenching distance are mainly those at the stoichiometric
concentration[3], the present calculations will mainly be carried out for the stoichiometric
concentrations as well.

2. Theoretical basis

The issue of the minimum ignition energy has extensively been discussed among others
by Lewis and von Elbe[1,2]. Therefore, a brief summary of the theory is given here.

In order to ignite a flammable gas mixture it is necessary to give the mixture a certain
minimum energy at a spot in a minute. The amount of energy should be enough to heat up a
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certain minimal sphere of the mixture to the flame temperature. If the diameter of the sphere
can be approximated by the quenching distanced, one may obtain the following equation.

Emin = 1
6πd3ρbCav(Tb − Tu) (1)

Here,ρb is the molar density of the burnt gas at temperatureTb (the flame temperature),
andTu the unburnt gas temperature (room temperature). The termCav(Tb − Tu) represents
an amount of enthalpy required to heat up one mole of burnt gas fromTu to Tb, whereCav
represents the molar heat capacity at constant pressure averaged for the temperature range.

On the other hand, whether or not the incipient minimal flame begins to grow up outward
depends on the balance between the heat of reaction and the heat loss from the surface of
the sphere. The minimum ignition energy may be given by the heat loss from the surface
of the sphere within a time interval ofδ/Sav, whereδ is the width of flame front andSav the
average burning velocity. From this, one obtains the following equation.

Emin = πd2λav(Tb − Tu)

Sav
(2)

Here,d is the quenching distance andλav the heat conductivity averaged for the temperature
range. Since there is a large temperature difference between both ends of the flame front
(Tu andTb), the value of heat conductivity must be averaged for the temperature range. On
the other hand,Sav has been introduced to derive the time for the gas to pass through the
width of flame front to complete the combustion reaction. Therefore, the value averaged for
the temperature range has to be used as well.

The data of the quenching distance and burning velocity at room temperature used for
the calculation as well as the data of minimum ignition energy have been taken from NACA
Report 1300[3]. The data of flame temperature are calculated values of adiabatic flame
temperatures. The data of heat capacity and coefficient of heat conductivity at different
temperatures have been taken from other sources[4,5] and used to obtain equations to
estimate approximate values at higher temperatures.

3. Intermediate calculations of key parameters

3.1. Average values of heat capacity

As stated, the termCav(Tb−Tu) in Eq. (1)is the enthalpy required to heat the burnt gas up
to the flame temperature, and thereforeCav is the temperature averaged value. Availability
of experimental data of heat capacity is limited for relatively low temperatures though. In
the present study, the following method has been adopted to estimate the average values.

Fig. 1 shows a plot of experimental values of molar heat capacity against the number
of atoms in the molecule for 61 compounds the majority of which are simple organic
compounds. Though the dispersion of data points is not so small at room temperature, rapidly
it becomes small for higher temperatures and the data points for a given temperature become
distributed neatly along a straight line which goes through the origin. This fact suggests
that the heat capacity at higher temperatures can be estimated only if the number of atoms
in the fuel molecule is known. In the present case, it is advantageous that the contribution
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Fig. 1. Plot of heat capacity vs. number of atoms in molecule.

of the values at higher temperatures to the average value is much larger than that of lower
temperatures, for the value of heat capacity in general becomes large as the temperature
rises. Thus, the value of heat capacity can be approximated by a linear function of the
number of atoms in the molecule as follows.

Cp = A + Bn (3)

Here, the coefficientsA andB are functions of temperatureT. A quadratic function of abso-
lute temperature has been assumed for each of them. Then, the values of the six coefficient
in the following function have been obtained by the least squares fit to the observed values
of 61 compounds in total. The temperature range of the data are from 300 to 1500 K for the
widest case.

Cp = (a + bT + cT2) + (d + eT + fT2)n (4)

As a result, the values of the coefficients have been determined asa = 9.40,b = −0.0231,
c = 0.00000912,d = 0.909,e = 0.0241, andf = −0.00000775, whereCp is expressed
in units of J/(mol K).Fig. 2shows a general feature of the fitting to the 523 data in total for
the 61 compounds.

It is to be noticed, however, that since the adoption of quadratic functions is an expedient
approximation, one must be careful to extrapolate them to the temperature range where
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Fig. 2. Fitting to the heat capacity of various molecules at various temperatures.

there are no data available to check the validity of the equations. In the present case, for
both the parabolic functions ofT (the intercept term and the coefficient of first-order term),
in order to calculate the temperature average values we have used the values at the apex of
the parabola, i.e. (4ac − b2)/4c or (4df − e2)/4f, beyond the temperature that corresponds to
the apex of the parabola. In this way, the temperature averaged values of heat capacity have
been obtained by numerical integration of the right hand side ofEq. (4) for eachn value
employing the “beyond the apex rule”. The result of calculation is shown in 11th column of
Table 1. The value of heat capacity at the stoichiometric concentration for each compound
has been obtained by taking proportional average of the values of fuel and air and listed in
12th column ofTable 1, where the data for air has directly been taken from the literature
[4]. The error in the estimated value of temperature averaged heat capacity of each fuel due
to the present approximation is reduced by the ratio of dilution to obtain the stoichiometric
mixture.

3.2. Average values of heat conductivity

As for heat conductivityλ of polyatomic molecules, Eucken’s equation is known[6].

λ =
(

Cp + 5

4
R

)
µ

M
(5)

Here,R is the gas constant,µ the coefficient of viscosity, andM the molecular weight.
This equation shows thatλ is a linear function of reciprocal molecular weight.Fig. 3shows
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Table 1
Observed and calculated values of minimum ignition energy and related quantities

Compound Molecular
weight

No of
atoms

HOC
(kJ/mol)

Cst
(vol.%)

Tb
(K)

Emin
(φ = 1)
(mJ)

d
(φ = 1)
(mm)

Su
(cm/s)

Sav
(cm/s)

Cav
(J/(mol K))

Cav
(φ = 1)
(J/(mol K))

λav
(10−4 W/
(cm K))

λav (φ = 1)
(10−4 W/
(cm K))

Emin by
Eq. (1)
(mJ)

Emin by
Eq. (2)
(mJ)

δ (mm)

Acetone 58.1 10 1690 4.97 2122 1.150 3.80 50 156 169 40.6 752 632 12.20 3.36 0.076
Acetylene 26.0 4 1251 7.72 2536 0.030 0.70 155 544 66 36.3 854 644 0.07 0.04 0.028
Acrolein 56.1 8 1599 5.64 2363 0.170 1.50 62 207 135 39.5 714 631 0.74 0.44 0.063
Acrylnitrile 53.1 7 1725 5.28 2461 0.360 2.20 47 162 117 38.3 705 630 2.28 1.28 0.086
Benzene 78.1 12 3163 2.71 2305 0.550 2.80 45 148 203 38.4 695 628 4.68 2.09 0.089
1,3-Butadiene 54.1 10 2406 3.66 2375 0.230 1.70 60 201 169 38.8 779 632 1.06 0.59 0.066
n-Butane 58.1 14 2650 3.12 2255 0.760 3.00 41 133 237 40.2 848 633 6.01 2.63 0.094
Carbon disulfide 76.1 3 1104 6.52 2254 0.015 0.50 54 175 49 34.8 531 620 0.02 0.05 0.081
Cyclohexane 84.2 18 3685 2.27 2252 1.380 4.00 42 136 305 40.0 770 629 14.17 4.54 0.092
Cyclopentane 70.1 15 3091 2.71 2263 0.830 3.30 41 133 254 39.8 789 630 7.92 3.18 0.094
Cyclopropane 42.1 9 1959 4.44 2327 0.240 1.80 52 172 152 39.1 856 636 1.27 0.76 0.077
Diethyl ether 74.1 15 2531 3.37 2252 0.490 2.50 44 143 254 41.3 767 631 3.57 1.70 0.085
2,2-Dimethyl-butane 86.2 20 3863 2.16 2252 1.640 4.50 39 126 340 40.5 793 630 20.40 6.19 0.098
Dimethyl ether 46.1 9 1329 6.52 2227 0.450 2.30 50 161 152 41.5 815 638 2.79 1.27 0.075
Ethane 30.1 8 1427 5.64 2244 0.420 2.30 44 142 135 39.5 993 647 2.66 1.47 0.091
Ethene 28.1 6 1323 6.52 2375 0.096 1.20 75 252 100 38.2 930 646 0.37 0.24 0.055
Ethyl acetate 88.1 14 2097 4.02 2223 1.420 4.30 36 116 237 42.0 692 629 18.45 6.07 0.102
Ethylene imine 43.1 8 1518 6.05 2398 0.480 2.50 43 145 135 39.9 811 637 3.49 1.81 0.091
Ethylene oxide 44.1 7 1219 7.72 2411 0.100 1.30 100 339 117 40.3 769 637 0.49 0.21 0.039
n-Heptane 100 23 4485 1.87 2213 1.150 3.80 42 135 391 40.5 777 629 12.27 4.06 0.090
n-Hexane 86.2 20 3881 2.16 2238 0.950 3.50 42 136 340 40.5 793 630 9.59 3.47 0.091
Hydrogen 2.00 2 240 29.5 2376 0.020 0.60 291 977 32 33.3 4453 1755 0.04 0.04 0.044
Methane 16.0 5 799 9.47 2236 0.330 2.50 37 119 83 38.5 1239 684 3.33 2.18 0.117
Methyl alcohol 32.0 6 675 12.2 2219 0.210 1.80 52 167 100 42.0 865 655 1.35 0.77 0.073
2-Methyl-butane 72.1 17 3255 2.55 2252 0.960 3.50 40 130 288 40.3 815 631 9.57 3.66 0.096
n-Pentane 72.1 17 3264 2.55 2250 0.820 3.30 42 136 288 40.3 815 631 8.02 3.10 0.091
cis-2-Pentene 70.1 15 3141 2.71 2241 0.820 3.30 48 155 254 39.8 789 630 7.91 2.70 0.081
Propane 44.1 11 2041 4.02 2250 0.300 1.80 43 139 186 40.0 899 637 1.29 0.91 0.091
Propene 42.1 9 1924 4.44 2338 0.280 2.00 48 160 152 39.1 856 636 1.74 1.02 0.083
Propylene oxide 58.1 10 1810 4.97 2316 0.190 1.80 77 254 169 40.6 752 632 1.31 0.51 0.050
2,2,3-Trimethyl-

butane
100 23 4464 1.87 2241 1.000 3.50 39 126 391 40.5 777 629 9.61 3.73 0.097

2,2,4-Trimethyl-
pentane

114 26 5080 1.65 2233 0.290 2.00 38 123 442 40.6 764 628 1.79 1.25 0.100
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Fig. 3. Plot of heat conductivity vs. reciprocal weight of molecule.

a plot of heat conductivity against reciprocal molecular weight for 35 gases the majority of
which are simple organic compounds as well. Though the dispersion of data points is not
very small, this figure confirms that the heat conductivity is a linear function of reciprocal
molecular weight. However, it also suggests that the plot is better explained if a constant
term is added in the equation. As seen in the above,Cp can be considered proportional to
the number of atoms in the molecule (n) at the first approximation. Therefore,λ may be
given by the following equation.

λ = C + D

M
+ En

M
(6)

The coefficientsC, D, andE are functions of temperatureT. Fortunately, in this case, it
has been found that a linear function of temperature is enough to account for the behav-
iors of the three coefficients. Then, the value of heat conductivity can be expressed as
follows.

λ = p + qT + r + sT

M
+ (t + uT)n

M
(7)

The least-squares calculation to determine the values of coefficients has been carried out
fitting to a total of 205 data for 35 compounds, where the widest temperature region available
has been from 300 to 1000 K. The numerical coefficients have been obtained asp = −103.3,
q = 0.572,r = 3700.9, s = −0.4555,t = −923.1, andu = 3.127 if λ is expressed in
units of 10−4 W/(m s).Fig. 4shows a general feature of the fitting.
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Fig. 4. Fitting to the observed values of heat conductivity.

In order to obtain the value ofλav in Eq. (2), the reciprocal value ofλ should be averaged
for the temperature range fromTu to Tb. Actually, the reciprocal of the right hand side of
Eq. (7)has numerically been integrated from 300 to 2300 K for all compounds for simplicity
reason and listed in 13th column ofTable 1. Further, the values for the stoichiometric
mixtures have simply been obtained by the proportional addition as in the case of heat
capacity. The result is shown in 14th column ofTable 1.

3.3. Average values of burning velocity

As for the burning velocity, the literature usually lists only the maximum values for the
respective fuel–air combinations[1]. Therefore, we have used them instead of the values at
the stoichiometric concentrations. The burning velocity is indeed a function of concentra-
tion, and the maximum value is usually located in a little richer side of the stoichiometric
concentration. However, the difference between the maximum burning velocity and the one
at the stoichiometric concentration is not so large; the discrepancy may be 10% or so except
for hydrogen.

As stated, the burning velocity appearing inEq. (2) should be the value averaged for
the width of flame front. In this case, the reciprocal value ofSu has to be averaged for the
temperature range fromTu to Tb. Since the product of gas density and burning velocity
is constant across the flame width, reciprocal burning velocity 1/Su is proportional to gas
densityρ, which is equal toP/RT from the ideal gas law equation. Therefore, the average
value of burning velocitySavhas been obtained through integration of reciprocal temperature
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from Tu to Tb, of which reciprocal has to be taken back eventually of course. The result of
calculation is shown in 10th column ofTable 1.

4. Calculation of minimum ignition energies

4.1. Calculation by Eq. (1)

Calculation of the minimum ignition energy by usingEq. (1)requires the data of quench-
ing distance, gas density, and flame temperature besides the heat capacity. The experimental
data of the minimum ignition energy and quenching distance have been used in the present
study for various fuels. As stated in the above, the values of heat capacity can be estimated
if the number of atoms in the molecule is given, and the average values can be obtained by
integrating the expression given inEq. (4). The flame temperatures are the calculated values
of adiabatic flame temperatures.Fig. 5compares the values of the minimum ignition energy
calculated byEq. (1)with the observed values. Actual numbers are shown in 15th column of
Table 1. Although there is a close relationship between the calculated and observed values,
the calculated values are almost one-order of magnitude larger than the observed ones. In
addition, it is noted that the plotted points are distributed along a line not straight but a
little curved upward. It may be that the minimum ignition energy is rather closer to the
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Fig. 5. Minimum ignition energy calculated byEq. (1)vs. the observed values.
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Fig. 6. Minimum ignition energy calculated byEq. (2)vs. the observed values.

enthalpy contained in a thin surface layer rather than that contained in the whole sphere of
the minimal flame.

4.2. Calculation by Eq. (2)

Calculation ofEmin by Eq. (2)requires knowledge of burning velocity and heat conduc-
tivity besides the ones used inEq. (1). The methods of calculating the average values of
burning velocity and heat conductivity have already been described in the above.

Fig. 6 shows the result of the calculation, where the values of minimum ignition en-
ergy calculated byEq. (2) are plotted against the observed values. Actual numbers are
shown in 16th column ofTable 1. Here, a linear relationship is observed between the
calculated and observed values, though discrepancy is noted for a few points. This re-
sult strongly suggests that the basic concept ofEq. (2) is valid for discussing the issue
of minimum ignition energy of various fuel gases. It is to be noted that the calculated
values are about three times or more as large as the observed ones. The fact that the
calculated values are much larger than the observed ones is quite understandable if one
considers that the minimum ignition energy is measured in a free space between a pair
of sharpened electrodes while the quenching distance is measured between solid walls
by which the propagation flame is severely cooled, although it is difficult to make more
quantitative discussion. At any rate, the average ratio between the observed and calculated
values of minimum ignition energy can be obtained through regression analysis: actually
the average ratio has been found to be 0.282± 0.006. This may in turn imply that the
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Fig. 7. Plot of minimum ignition energy vs. square of quenching distance.

diameter of minimal flame is on the average a factor of 0.53 smaller than the quenching
distance.

On the other hand, Lewis and Elbe’s relationship that the minimum ignition energy is
proportional to the square of quenching distance for not extremely strong flames seems to
be valid even at the stoichiometric concentration for ordinary fuel and air mixtures.Fig. 7
shows a plot ofEmin against quenching distanced for the present set of compounds. IfEmin
is expressed in units of mJ and quenching distance in mm, the proportionality relationship
becomes as follows.

Emin = (0.0787± 0.0009) × d2 (8)

5. Discussion

Comparison of the calculated results by the two equations with the observed values clearly
shows superiority ofEq. (2)overEq. (1). Firstly, the calculated values byEq. (2)is closer
to the observed values than that byEq. (1), and secondly the relation between the calculated
and observed values are linear forEq. (2), while it is non-linear forEq. (1). This result
indicates that the minimum ignition energy is much smaller than the enthalpy contained in
the burnt gas of flame temperature that fills the full volume of minimal flame.

Eq. (2)has been derived through consideration of the heat loss from the surface of minimal
flame during the time the gas passes through the width of flame front. On the other hand,
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another equation of the minimum ignition energy is obtained from the amount of sensible
energy of the unburnt gas which enters the flame surface during the same time period. In
this case, the minimum ignition energy may be given by the following equation.

Emin = πd2SuρuCav(Tb − Tu)
δ

Sav
(9)

Here,Su is the burning velocity at room temperature,ρu molar density of unburnt gas, and
δ width of flame front. The quantity given by this equation should indeed be equal to that
of Eq. (2). By equating the two expressions, the following equation is obtained.

δ = λav

ρuSuCav
(10)

The values ofδ have been calculated by this equation from the data already prepared for
calculatingEqs. (1) and (2), and are shown in 17th column ofTable 1.

Fig. 8shows a plot of the calculated values ofδ against quenching distance. The calculated
values of flame front width are on the whole about one-order of magnitude smaller than the
quenching distances. As expected, there is a general tendency that the larger the quenching
distance the larger the width of flame front. However, the dispersion of the plotted points
is so large that we cannot see any clear relationship between the two quantities. This result
combined with the fact that the values of minimum ignition energy calculated byEq. (2)are
in linear relationship with the observed values confirms that the minimum ignition energy
is proportional to the square rather than the cubic power of quenching distance even at the
stoichiometric concentration with air for the fuels treated in the present paper.
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6. Conclusion

The minimum ignition energy has been calculated by using two different equations for
various combustible gases. One equation is based on the enthalpy that fills the whole volume
of minimal flame, and the other due to the heat loss from the surface of the minimal flame.
Of the two equations, the latter can better explain the experimental data than the former. In
addition, from the balance between the heat loss from the surface of the minimal flame and
the sensible energy contained in the unburnt gas that enters the flame front in the same time
period, a relationship between the width of flame front for minimal flame and quenching
distance has been derived. As a result, it has been found that the width of flame front is
in general one-order of magnitude smaller than the quenching distance, though there is no
systematic relationship between the two quantities. In conclusion, the whole of the present
calculations supports the superiority ofEq. (2)overEq. (1)as the expression of minimum
ignition energy. From the analysis by usingEq. (2), we can obtain information on the width
of flame front and the difference of the heat loss rates for minimum ignition energy and
quenching distance measurements as well.
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